GLRec2021

Train

Config

from google.colab import drive

drive.mount('/content/drive')


import os

import re

import sys

import math

import random

import logging

import requests


import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import tensorflow_probability as tfp


from tqdm.notebook import *

from sklearn import metrics

from sklearn.model_selection import train_test_split


import tensorflow as tf

import tensorflow_hub as hub

from tensorflow.keras.layers import *

from tensorflow.keras import backend as K

from tensorflow.keras.optimizers import *

from tensorflow.keras import mixed_precision


try:

    import albumentations as A

    import tensorflow_addons as tfa

    from vit_keras import vit, layers

    import efficientnet.tfkeras as efn

    from classification_models.tfkeras import Classifiers

except:

    !pip install -qq gcsfs

    !pip install -qq vit-keras

    !pip install -qq efficientnet

    !pip install -qq albumentations

    !pip install -qq image-classifiers

    !pip install -qq tensorflow-addons

    !gdown --id 16MJuZ3wovKcc1B7V6eaUZKwkH1Dipykg

   

    import albumentations as A

    import tensorflow_addons as tfa

    from vit_keras import vit, layers

    import efficientnet.tfkeras as efn

    from classification_models.tfkeras import Classifiers


logging.disable(logging.WARNING)

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

tpu = tf.distribute.cluster_resolver.TPUClusterResolver()

print('Running on TPU ', tpu.master())


#tf.config.set_soft_device_placement(True)

tf.config.experimental_connect_to_cluster(tpu)

tf.tpu.experimental.initialize_tpu_system(tpu)

strategy = tf.distribute.experimental.TPUStrategy(tpu)

print("REPLICAS: ", strategy.num_replicas_in_sync)

AUTO = tf.data.experimental.AUTOTUNE


config = {

    "seed": 1312,

   

    "lr": 1e-4,

    "valid_size": 0.05,

    "epochs": 50,

    "batch_size":  8 * strategy.num_replicas_in_sync,

    "image_size": [800, 800, 3],

    "embedding_dimensions": 1024,

    "n_classes": 81313,


    "image_paths": [

                    'gs://kds-02a5b8675d55c9a79251760390f626ffd3a0807438e67d2c7edea3cb',

                    'gs://kds-7aa79b5bc6f9af00ef7fd0c00f645a0abe32ebc8426ce4dd299077e6',

                    'gs://kds-971e58e5965ae894e73daa42bc53c93538d7afd16f8cc31a7e0ec68b',

                    'gs://kds-9c55456bf87ba673337d07f52d56d36e16e1ead2da1bb15e16610dd7',

                    'gs://kds-5949695dad43c3d30cd209773b1365e354a3613d9b63a25051eb4305',

                    'gs://kds-c4a1c215158b3e3002adac53b7de364a742bae7c6557212557d0378e',

                    'gs://kds-969690135ac88129bd11436ab06669e2aa1a23d66083087e9a692255',

                    'gs://kds-1793eae3b59c9d40461a1b04d82452040a42b8b0f063554dcd024ccf',

                    'gs://kds-73589684dcf1e8ebd2d37605cdb19ebfa650cccb17f36221e0ee48ac',

                    'gs://kds-d0e89541a75c0bf3642ef1f91a8f5ed5ff25630b417d504fba0d77ab',

                    'gs://kds-ebc1e3faa8dbe5cc846799207a330dd245c63befa4c93241ce526d1a',

                    'gs://kds-3b830115dd341cae8ac39c8d611fe4bc6fcad798e1e84ec336de6b36',

                    'gs://kds-8cb07756a69b20d2e4f294f26a928e7d285cf6d6db6640d9873c7ee1',

                    'gs://kds-e9f50c957467dcf68c27f8b865d87720e2cd4f1ff058733e474920d0',

                    'gs://kds-20d0c45f1756ef8664edcf2aa2db83ca4a0efbfb8ea533cd0bf85633',

                    'gs://kds-6ea4f0da52f0c996a7fbe5835459d1301a824236e793dadea8776b7d',

                    'gs://kds-05fdfc56d42ee43c29806c0dc9a06edb5d6f9a1cd82871b67538986a',

                    'gs://kds-6fb2e328eab4580255aa16b7f9bc7074babb1f68488144750b2e1c9f',

                    'gs://kds-02f60c478a0a861b6b80dba0ebb07e4d8547ad036ea01065a560d520',

                    'gs://kds-75583a573fde7550697fd8f591a2db35399acd2e772ca31eaecce602'

    ],

    "encoded_csv_path": 'train_encoded.csv',

    "save_path": "/content/drive/My Drive/2021_GLR/",


    "margin": "AdaCos",

    "backbone": "efficientnetv2-b3",

    "last_epoch": 34,

    "total_save": 5

}

config["save_path"] += config["backbone"]


if (config["last_epoch"] != 0):

    config["weight_path"] = os.path.join(config["save_path"], "model_{}_{}_{}.h5".format(config["backbone"], config["margin"], (config["last_epoch"])%config["total_save"]))

else:

    config["weight_path"] = None


augmentation = A.Compose([

                          A.HorizontalFlip(p = 0.5),

                          A.RandomBrightnessContrast(brightness_limit=0.1, p=0.2),

                          A.JpegCompression(quality_lower=95, quality_upper=100, p=0.25),

                          A.ShiftScaleRotate(shift_limit=0.05, scale_limit=0.05, rotate_limit=15, p=0.25),

                          A.Cutout(num_holes=2, max_h_size=4, max_w_size=4, p=0.1),

])

def seed_everything(seed):

    random.seed(seed)

    np.random.seed(seed)

    os.environ['PYTHONHASHSEED'] = str(seed)

    tf.random.set_seed(seed)


seed_everything(config["seed"])


Data

def transform(image, label):

    image = augmentation(image=image)["image"]

    return image, label

def decode_image(image_data, image_size = config['image_size']):

    image = tf.image.decode_jpeg(image_data, channels = 3)

    image = tf.cast(image, tf.float32) / 255.0

    #image = tf.image.resize(image, (config["image_size"][0], config["image_size"][1]))

    image = tf.image.resize_with_pad(image, target_height = config["image_size"][0], target_width = config["image_size"][1])

    image = tf.reshape(image, image_size)

    return image


def count_data_items(filenames):

    records = [int(re.compile(r"_([0-9]*)\.").search(filename).group(1)) for filename in filenames]

    df = pd.read_csv(config["encoded_csv_path"])

    n = df[df['group'].isin(records)].shape[0]

    return n


def read_tfrecord(example):

    TFREC_FORMAT = {

        "image": tf.io.FixedLenFeature([], tf.string),

        "target": tf.io.FixedLenFeature([], tf.int64)

    }

    example = tf.io.parse_single_example(example, TFREC_FORMAT)

    image = decode_image(example['image'], config['image_size'])

    target = tf.cast(example["target"], tf.int32)

    if (config['margin'] != "ArcMargin"):

        target = tf.one_hot(target, tf.constant(config["n_classes"], name = "C"), on_value = 1.0, off_value = 0.0, axis =-1)

    return image, target


def load_dataset(filenames, ordered = False):

    ignore_order = tf.data.Options()

    if not ordered:

        ignore_order.experimental_deterministic = False

   

    dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO)

    dataset = dataset.with_options(ignore_order)

    dataset = dataset.map(read_tfrecord, num_parallel_calls = AUTO)

    return dataset


def arcface_format(image, target):

    return {'input': image, 'label': target}, target


def get_training_dataset(filenames, ordered = False, do_aug = False):

    dataset = load_dataset(filenames, ordered = ordered)

    if (do_aug):

        dataset = dataset.map(transform, num_parallel_calls = AUTO)

    dataset = dataset.map(arcface_format, num_parallel_calls = AUTO)

    dataset = dataset.repeat()

    dataset = dataset.shuffle(config["seed"])

    dataset = dataset.batch(config["batch_size"])

    dataset = dataset.prefetch(AUTO)

    return dataset


def get_validation_dataset(filenames, ordered = True, prediction = False):

    dataset = load_dataset(filenames, ordered = ordered)

    dataset = dataset.map(arcface_format, num_parallel_calls = AUTO)

    if prediction:

        dataset = dataset.batch(config["batch_size"])

    else:

        dataset = dataset.batch(config["batch_size"])

    dataset = dataset.prefetch(AUTO)

    return dataset


Model

class CosineSimilarity(tf.keras.layers.Layer):

    def __init__(self, num_classes, **kwargs):

        super().__init__(**kwargs)

        self.num_classes = num_classes


    def build(self, input_shape):

        input_dim = input_shape[-1]

        self.W = self.add_weight(shape=(input_dim, self.num_classes),

                                 initializer='random_normal',

                                 trainable=True)


    def call(self, inputs):

        x = tf.nn.l2_normalize(inputs, axis=-1) # (batch_size, ndim)

        w = tf.nn.l2_normalize(self.W, axis=0)   # (ndim, nclass)        

        cos = tf.matmul(x, w) # (batch_size, nclass)

        return cos

   

    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'num_classes': self.num_classes

        })

        return config

class ArcFace(tf.keras.layers.Layer):

    def __init__(self, num_classes, margin=0.5, scale=64, **kwargs):

        super().__init__(**kwargs)

        self.num_classes = num_classes

        self.margin = margin

        self.scale = scale


        self.cos_similarity = CosineSimilarity(num_classes)


    def call(self, inputs, training):

        # If not training (prediction), labels are ignored

        feature, labels = inputs

        cos = self.cos_similarity(feature)


        if training:

            theta = tf.acos(tf.clip_by_value(cos, -1, 1))

            cos_add = tf.cos(theta + self.margin)

   

            mask = tf.cast(labels, dtype=cos_add.dtype)

            logits = mask*cos_add + (1-mask)*cos

            logits *= self.scale

            return logits

        else:

            return cos


    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'num_classes': self.num_classes,

            'margin': self.margin,

            'scale': self.scale

        })

        return config

class GeMPooling(tf.keras.layers.Layer):

    def __init__(self, p=1.0, eps=1e-7):

        super().__init__()

        self.p = p

        self.eps = 1e-7


    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'p': self.p,

            'eps': self.eps

        })

        return config


    def call(self, inputs: tf.Tensor, **kwargs):

        inputs = tf.clip_by_value(inputs, clip_value_min=self.eps, clip_value_max=tf.reduce_max(inputs))

        inputs = tf.pow(inputs, self.p)

        inputs = tf.reduce_mean(inputs, axis=[1, 2])

        inputs = tf.pow(inputs, 1./self.p)

        return inputs


class CosineSimilarity(tf.keras.layers.Layer):

    """

    Cosine similarity with classwise weights

    """

    def __init__(self, num_classes, **kwargs):

        super().__init__(**kwargs)

        self.num_classes = num_classes


    def build(self, input_shape):

        input_dim = input_shape[-1]

        self.W = self.add_weight(shape=(input_dim, self.num_classes),

                                 initializer='random_normal',

                                 trainable=True)


    def call(self, inputs):

        x = tf.nn.l2_normalize(inputs, axis=-1) # (batch_size, ndim)

        w = tf.nn.l2_normalize(self.W, axis=0)   # (ndim, nclass)

        cos = tf.matmul(x, w) # (batch_size, nclass)

        return cos

   

    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'num_classes': self.num_classes

        })

        return config


class ArcMargin(tf.keras.layers.Layer):

    def __init__(self, n_classes, s=30, m=0.50, easy_margin=False, ls_eps=0.0, **kwargs):

        super(ArcMargin, self).__init__(**kwargs)


        self.n_classes = n_classes

        self.s = s

        self.m = m

        self.ls_eps = ls_eps

        self.easy_margin = easy_margin

        self.cos_m = tf.math.cos(m)

        self.sin_m = tf.math.sin(m)

        self.th = tf.math.cos(math.pi - m)

        self.mm = tf.math.sin(math.pi - m) * m


    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'n_classes': self.n_classes,

            's': self.s,

            'm': self.m,

            'ls_eps': self.ls_eps,

            'easy_margin': self.easy_margin,

        })

        return config


    def build(self, input_shape):

        super(ArcMargin, self).build(input_shape[0])


        self.W = self.add_weight(

            name='W',

            shape=(int(input_shape[0][-1]), self.n_classes),

            initializer='glorot_uniform',

            dtype='float32',

            trainable=True,

            regularizer=None

        )


    def call(self, inputs):

        X, y = inputs

        y = tf.cast(y, dtype=tf.int32)

        cosine = tf.matmul(

            tf.math.l2_normalize(X, axis=1),

            tf.math.l2_normalize(self.W, axis=0)

        )

        sine = tf.math.sqrt(1.0 - tf.math.pow(cosine, 2))

        phi = cosine * self.cos_m - sine * self.sin_m

        if self.easy_margin:

            phi = tf.where(cosine > 0, phi, cosine)

        else:

            phi = tf.where(cosine > self.th, phi, cosine - self.mm)

        one_hot = tf.cast(

            tf.one_hot(y, depth=self.n_classes),

            dtype=cosine.dtype

        )

        if self.ls_eps > 0:

            one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.n_classes


        output = (one_hot * phi) + ((1.0 - one_hot) * cosine)

        output *= self.s

        return output


class ArcFace(tf.keras.layers.Layer):

    """

    Implementation of https://arxiv.org/pdf/1801.07698.pdf

    """      

    def __init__(self, num_classes, margin=0.5, scale=64, **kwargs):

        super().__init__(**kwargs)

        self.num_classes = num_classes

        self.margin = margin

        self.scale = scale


        self.cos_similarity = CosineSimilarity(num_classes)


    def call(self, inputs, training):

        # If not training (prediction), labels are ignored

        feature, labels = inputs

        cos = self.cos_similarity(feature)


        if training:

            theta = tf.acos(tf.clip_by_value(cos, -1, 1))

            cos_add = tf.cos(theta + self.margin)

   

            mask = tf.cast(labels, dtype=cos_add.dtype)

            logits = mask*cos_add + (1-mask)*cos

            logits *= self.scale

            return logits

        else:

            return cos


    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'num_classes': self.num_classes,

            'margin': self.margin,

            'scale': self.scale

        })

        return config


class AdaCos(tf.keras.layers.Layer):

    def __init__(self, num_classes, **kwargs):

        super().__init__(**kwargs)

        self.num_classes = num_classes


        self.cos_similarity = CosineSimilarity(num_classes)

        self.scale = tf.Variable(tf.sqrt(2.0)*tf.math.log(num_classes - 1.0),

                                 trainable=False)


    def call(self, inputs, training):

        # In inference, labels are ignored

        feature, labels = inputs

        cos = self.cos_similarity(feature)


        if training:

            mask = tf.cast(labels, dtype=cos.dtype)

       

            # Collect cosine values at only false labels

            B = (1 - mask)*tf.exp(self.scale*cos)

            B_avg = tf.reduce_mean(tf.reduce_sum(B, axis=-1), axis=0)


            theta = tf.acos(tf.clip_by_value(cos, -1, 1))

            # Collect cosine at true labels

            theta_true = tf.reduce_sum(mask*theta, axis=-1)

            # get median (=50-percentile)

            theta_med = tfp.stats.percentile(theta_true, q=50)

 

            scale = tf.math.log(B_avg) / tf.cos(tf.minimum(np.pi/4, theta_med))

            scale = tf.stop_gradient(scale)

            logits = scale*cos

           

            self.scale.assign(scale)

            return logits

        else:

            return cos


    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'num_classes': self.num_classes

        })

        return config



class CircleLoss(tf.keras.layers.Layer):

    """

    Implementation of https://arxiv.org/abs/2002.10857 (pair-level label version)

    """

    def __init__(self, margin=0.25, scale=256, **kwargs):

        """

        Args

          margin: a float value, margin for the true label (default 0.25)

          scale: a float value, final scale value,

            stated as gamma in the original paper (default 256)

        Returns:

          a tf.keras.layers.Layer object, outputs logit values of each class

        In the original paper, margin and scale (=gamma) are set depends on tasks

        - Face recognition: m=0.25, scale=256 (default)

        - Person re-identification: m=0.25, scale=256

        - Fine-grained image retrieval: m=0.4, scale=64

        """

        super().__init__(**kwargs)

        self.margin = margin

        self.scale = scale


        self._Op = 1 + margin # O_positive

        self._On = -margin    # O_negative

        self._Dp = 1 - margin # Delta_positive

        self._Dn = margin     # Delta_negative


    def call(self, inputs, training):

        feature, labels = inputs

        x = tf.nn.l2_normalize(feature, axis=-1)

        cos = tf.matmul(x, x, transpose_b=True) # (batch_size, batch_size)


        if training:

            # pairwise version

            mask = tf.cast(labels, dtype=cos.dtype)

            mask_p = tf.matmul(mask, mask, transpose_b=True)

            mask_n = 1 - mask_p

            mask_p = mask_p - tf.eye(mask_p.shape[0])


            logits_p = - self.scale * tf.nn.relu(self._Op - cos) * (cos - self._Dp)

            logits_n = self.scale * tf.nn.relu(cos - self._On) * (cos - self._Dn)


            logits_p = tf.where(mask_p == 1, logits_p, -np.inf)

            logits_n = tf.where(mask_n == 1, logits_n, -np.inf)


            logsumexp_p = tf.reduce_logsumexp(logits_p, axis=-1)

            logsumexp_n = tf.reduce_logsumexp(logits_n, axis=-1)


            mask_p_row = tf.reduce_max(mask_p, axis=-1)

            mask_n_row = tf.reduce_max(mask_n, axis=-1)

            logsumexp_p = tf.where(mask_p_row == 1, logsumexp_p, 0)

            logsumexp_n = tf.where(mask_n_row == 1, logsumexp_n, 0)


            losses = tf.nn.softplus(logsumexp_p + logsumexp_n)


            mask_paired = mask_p_row*mask_n_row

            losses = mask_paired * losses

            return losses

        else:

            return cos

    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'margin': self.margin,

            'scale': self.scale

        })

        return config


class CircleLossCL(tf.keras.layers.Layer):

    """

    Implementation of https://arxiv.org/abs/2002.10857 (class-level label version)

    """    

    def __init__(self, num_classes, margin=0.25, scale=256, **kwargs):

        """

        Args

          num_classes: an int value, number of target classes

          margin: a float value, margin for the true label (default 0.25)

          scale: a float value, final scale value,

            stated as gamma in the original paper (default 256)

        Returns:

          a tf.keras.layers.Layer object, outputs logit values of each class

        In the original paper, margin and scale (=gamma) are set depends on tasks

        - Face recognition: m=0.25, scale=256 (default)

        - Person re-identification: m=0.25, scale=256

        - Fine-grained image retrieval: m=0.4, scale=64

        """

        super().__init__(**kwargs)

        self.num_classes = num_classes

        self.margin = margin

        self.scale = scale


        self._Op = 1 + margin # O_positive

        self._On = -margin    # O_negative

        self._Dp = 1 - margin # Delta_positive

        self._Dn = margin     # Delta_negative


        self.cos_similarity = CosineSimilarity(num_classes)


    def call(self, inputs, training):

        feature, labels = inputs

        cos = self.cos_similarity(feature)

       

        if training:

            # class-lebel version

            mask = tf.cast(labels, dtype=cos.dtype)


            alpha_p = tf.nn.relu(self._Op - cos)

            alpha_n = tf.nn.relu(cos - self._On)


            logits_p = self.scale*alpha_p*(cos - self._Dp)

            logits_n = self.scale*alpha_n*(cos - self._Dn)


            logits = mask*logits_p + (1-mask)*logits_n

            return logits

        else:

            return cos


    def get_config(self):

        config = super().get_config().copy()

        config.update({

            'num_classes': self.num_classes,

            'margin': self.margin,

            'scale': self.scale

        })

        return config

def get_margin(margin):

    if (margin == "ArcMargin"):

        return ArcMargin(n_classes = config["n_classes"], m = 0.1, s = 32)

    elif (margin == "ArcFace"):

        return ArcFace(num_classes = config["n_classes"], margin = 0.1, scale = 32)

    elif (margin == "AdaCos"):

        return AdaCos(num_classes = config["n_classes"])

    elif (margin == "CircleLossCL"):

        return CircleLossCL(num_classes = config["n_classes"], margin = 0.6, scale = 32)

    elif (margin == "CosFace"):

        return ArcFace(num_classes = config["n_classes"], margin = -0.1, scale = 32)


def get_backbone(backbone, x):

    if (hasattr(efn, backbone)):

        return GeMPooling(p = 3.0)(getattr(efn, backbone)(weights = "noisy-student", include_top = False)(x))

    elif hasattr(tf.keras.applications, backbone):

        return GeMPooling(p = 3.0)(getattr(tf.keras.applications, backbone)(weights = "imagenet", include_top = False)(x))

    elif hasattr(vit, backbone):

        return getattr(vit, backbone)(image_size = (config["image_size"][0], config["image_size"][1]),

                                      pretrained=True,

                                      include_top=False,

                                      pretrained_top=False)(x)


    elif "eff" in backbone:

        return hub.KerasLayer("gs://cloud-tpu-checkpoints/efficientnet/v2/hub/"+backbone+"-21k-ft1k/feature-vector", trainable=True)(x)


def model_factory(backbone, image_size, embedding_dimensions, margin):

    x = Input(shape = (*image_size,), name = 'input')

    label = Input(shape = (), name = 'label')


    headModel = get_backbone(backbone, x)

    headModel = Dense(embedding_dimensions, activation = "linear")(headModel)

    headModel = BatchNormalization()(headModel)

    headModel = PReLU()(headModel)

    headModel = get_margin(margin = margin)([headModel, label])


    output = Softmax(dtype='float32')(headModel)

    model = tf.keras.models.Model(inputs = [x, label], outputs = [output])

    return model


Callbacks

def get_lr_callback(plot=False):

    LR_START = config["lr"] * (config["batch_size"] / 256)

    LR_MAX = 5 * LR_START

    LR_MIN = LR_START/10

    LR_RAMPUP_EPOCHS = 5

    LR_SUSTAIN_EPOCHS = 0

    LR_EXP_DECAY = 0.8


    def lrfn(epoch):

        if epoch < LR_RAMPUP_EPOCHS:

            lr = (LR_MAX - LR_START) / LR_RAMPUP_EPOCHS * epoch + LR_START

        elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:

            lr = LR_MAX

        else:

            lr = (LR_MAX - LR_MIN) * LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS) + LR_MIN

        return lr


    if plot:

        epochs = list(range(config["epochs"]))

        learning_rates = [lrfn(x) for x in epochs]

        plt.plot(epochs, learning_rates)

        print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(learning_rates[0], max(learning_rates), learning_rates[-1]))

        plt.show()


    lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=False)

    return lr_callback

class SaveModelCheckpoint(tf.keras.callbacks.Callback):

    def __init__(self, path):

        self.path = path


    def on_epoch_end(self, epoch, logs={}):

        self.model.save(os.path.join(self.path, "model_{}_{}_{}.h5".format(config["backbone"], config["margin"], (epoch + 1)%config["total_save"])))


Run

df = pd.read_csv(config["encoded_csv_path"])


FILENAMES = []

for GCS_PATH in config["image_paths"]:

    FILENAMES += tf.io.gfile.glob(GCS_PATH + '/train*.tfrec')


TRAINING_FILENAMES, VALIDATION_FILENAMES = train_test_split(FILENAMES,

                                                            test_size=config["valid_size"],

                                                            random_state=42)


training_groups = [int(re.compile(r"_([0-9]*)\.").search(filename).group(1)) for filename in TRAINING_FILENAMES]

validation_groups = [int(re.compile(r"_([0-9]*)\.").search(filename).group(1)) for filename in VALIDATION_FILENAMES]


n_trn_classes = df[df['group'].isin(training_groups)]['landmark_id_encode'].nunique()

n_val_classes = df[df['group'].isin(validation_groups)]['landmark_id_encode'].nunique()


print(f'The number of unique training classes is {n_trn_classes} of {config["n_classes"]} total classes')

print(f'The number of unique validation classes is {n_val_classes} of {config["n_classes"]} total classes')


STEPS_PER_EPOCH = count_data_items(TRAINING_FILENAMES) // config["batch_size"]


train_dataset = get_training_dataset(TRAINING_FILENAMES, ordered = False, do_aug = True)

valid_dataset = get_validation_dataset(VALIDATION_FILENAMES, ordered = True, prediction = False)

with strategy.scope():

    optimizer = Adam(learning_rate = config["lr"])

    model = model_factory(margin = config["margin"],

                          backbone = config["backbone"],

                          image_size = config["image_size"],

                          embedding_dimensions = config["embedding_dimensions"])

   

    if (config["weight_path"]):

        model.load_weights(config["weight_path"])

    model.compile(optimizer = optimizer,

                loss = [tf.keras.losses.CategoricalCrossentropy() if (config['margin'] != "ArcMargin") else tf.keras.losses.SparseCategoricalCrossentropy()],

                metrics = [tf.keras.metrics.CategoricalAccuracy() if (config['margin'] != "ArcMargin") else tf.keras.metrics.SparseCategoricalAccuracy()])

checkpoint = SaveModelCheckpoint(path = config["save_path"])

lr_callback = get_lr_callback(plot = True)


H = model.fit(train_dataset,

              steps_per_epoch = STEPS_PER_EPOCH,

              epochs = config["epochs"],

              callbacks = [checkpoint, lr_callback],

              validation_data = valid_dataset,

              initial_epoch = config["last_epoch"],

              verbose = 1)


Infer

import gc

import os

import csv

import cv2

import sys

import copy

import math

import random

import shutil

import logging

import operator

import threading

import pydegensac


import numpy as np

import albumentations as A


import tensorflow as tf

import tensorflow_hub as hub

from tensorflow.keras.layers import *


from scipy import spatial

from tqdm.notebook import *

from sklearn.metrics import *


try:

    from vit_keras import vit

    import efficientnet.tfkeras as efn

    

    from ffyytt_tools.metric_learning.metric_learning_layers import *

except:

    sys.path.append("../input/ffyytt-tools")

    !pip install -qq vit-keras --no-index --find-links=file:///kaggle/input/2021-glr-lib

    !pip install -qq efficientnet --no-index --find-links=file:///kaggle/input/2021-glr-lib

        

    from vit_keras import vit

    import efficientnet.tfkeras as efn

    

    from ffyytt_tools.metric_learning.metric_learning_layers import *


model_paths = [

    "../input/2021-glr-all-best-model/model_efficientnetv2-b3_1024_ArcMargin_0.h5",

    "../input/2021-glr-all-best-model/model_efficientnetv2-m_1024_ArcMargin_0.h5",

    "../input/2021-glr-all-best-model/model_EfficientNetB4_512_ArcMargin_0.h5",

    "../input/2021-glr-all-best-model/model_EfficientNetB6_1024_AdaCos_0.h5",

    "../input/2021-glr-craw-weights-13092021/model_vit_b32_AdaCos_0.h5",

    "../input/2021-glr-model-temp/model_efficientnetv2-s_AdaCos_1.h5",

    "../input/2021-glr-model-temp/model_vit_b32_AdaCos_1.h5",

]


backbones = [

    "efficientnetv2-b3",

    "efficientnetv2-m",

    "EfficientNetB4",

    "EfficientNetB6",

    "vit_b32",

    "efficientnetv2-s",

    "vit_b32"

]


embedding_sizes = [

    1024,

    1024,

    512,

    1024,

    1024,

    1024,

    1024

]


paddings = [

    False,

    False,

    False,

    True,

    True,

    True,

    False,

]


margins = [

    "ArcMargin",

    "ArcMargin",

    "ArcMargin",

    "AdaCos",

    "AdaCos",

    "AdaCos",

    "AdaCos",

]


image_sizes = [

    (512, 512, 3),

    (512, 512, 3),

    (512, 512, 3),

    (800, 800, 3),

    (800, 800, 3),

    (800, 800, 3),

    (512, 512, 3),

]


ensemble_weight = np.array([1]*len(backbones))


augmentation = A.Compose([

    A.HorizontalFlip(p = 0.5)

])


config = {

    "n_workers": 4,

    "batch_size": 32,

    "n_classes": 81313,

    "distance_batch": 512,

    "NUM_PUBLIC_TRAIN_IMAGES": 1580470,

}

DEBUG = True

LOCAL = True

REMOVE_TOP_GLOBAL = 20

NUM_EMBEDDING_DIMENSIONS = max(embedding_sizes)

TOP_K = 3

NUM_TO_RERANK = 3

MAX_DISTANCE = 0.9

MAX_INLIER_SCORE = 50

HOMOGRAPHY_CONFIDENCE = 0.95

MAX_REPROJECTION_ERROR = 6.0

MAX_RANSAC_ITERATIONS = 900000


def get_margin(margin):

    if (margin == "ArcMargin"):

        return ArcMargin(n_classes = config["n_classes"], m = 0.1, s = 32)

    elif (margin == "ArcFace"):

        return ArcFace(num_classes = config["n_classes"], margin = 0.1, scale = 32)

    elif (margin == "AdaCos"):

        return AdaCos(num_classes = config["n_classes"])

    elif (margin == "CircleLossCL"):

        return CircleLossCL(num_classes = config["n_classes"], margin = 0.25, scale = 32)

    elif (margin == "CosFace"):

        return ArcFace(num_classes = config["n_classes"], margin = -0.1, scale = 32)


def get_backbone(backbone, x, image_size):

    if (hasattr(efn, backbone)):

        return GeMPooling(p = 3.0)(getattr(efn, backbone)(weights = None, include_top = False)(x))

    elif hasattr(tf.keras.applications, backbone):

        return GeMPooling(p = 3.0)(getattr(tf.keras.applications, backbone)(weights = None, include_top = False)(x))

    elif hasattr(vit, backbone):

        return getattr(vit, backbone)(image_size = (image_size[0], image_size[1]),

                                      pretrained=False,

                                      include_top=False,

                                      pretrained_top=False)(x)

    else:

        return hub.KerasLayer("../input/efficientnetv2-tfhub-weight-files/tfhub_models/"+backbone+"/feature_vector", trainable=True)(x)


def model_factory(backbone, image_size, embedding_dimensions, margin):

    x = Input(shape = (*image_size,), name = 'input')

    label = Input(shape = (), name = 'label')


    headModel = get_backbone(backbone, x, image_size)

    headModel = Dense(embedding_dimensions, activation = "linear")(headModel)

    headModel = BatchNormalization()(headModel)

    headModel = PReLU()(headModel)

    headModel = get_margin(margin = margin)([headModel, label])


    output = Softmax(dtype='float32')(headModel)

    model = tf.keras.models.Model(inputs = [x, label], outputs = [output])

    return model


global_models = [None]*len(model_paths)

for model_index in trange(len(model_paths)):

    model = model_factory(image_size = image_sizes[model_index],

                          margin = margins[model_index],

                          backbone = backbones[model_index],

                          embedding_dimensions = embedding_sizes[model_index])

    

    model.load_weights(model_paths[model_index])

    global_models[model_index] = tf.keras.models.Model(inputs = model.input[0],

                                                       outputs = model.layers[-4].output)


DELG_MODEL = tf.saved_model.load('../input/delg-saved-models/local_and_global')

DELG_IMAGE_SCALES = tf.convert_to_tensor([0.70710677, 1.0, 1.4142135])

DELG_SCORE_THRESHOLD = tf.constant(175.)

DELG_INPUT = ['input_image:0', 'input_scales:0', 'input_abs_thres:0']


# Local feature extraction:

LOCAL_FEATURE_NUM = tf.constant(1000)

LOCAL_MODEL = DELG_MODEL.prune(DELG_INPUT + ['input_max_feature_num:0'], ['boxes:0', 'features:0'])


def get_image_path(subset, image_id):

    return os.path.join(DATASET_DIR, subset, image_id[0], image_id[1], image_id[2], '{}.jpg'.format(image_id))


def load_image_tensor(image_path):

    image = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)

    image = augmentation(image=image)["image"]

    #image = cv2.resize(image, (image_size[0], image_size[1]))

    image = tf.convert_to_tensor(image)

    return image


def extract_local_features(image_path):

    image_tensor = load_image_tensor(image_path)

    features = LOCAL_MODEL(image_tensor,

                           DELG_IMAGE_SCALES,

                           DELG_SCORE_THRESHOLD,

                           LOCAL_FEATURE_NUM)



    keypoints = tf.divide(tf.add(tf.gather(features[0], [0, 1], axis=1),

                                 tf.gather(features[0], [2, 3], axis=1)), 2.0).numpy()


    descriptors = tf.nn.l2_normalize(features[1], axis=1, name='l2_normalization').numpy()

    return keypoints, descriptors


def get_putative_matching_keypoints(test_keypoints,

                                    test_descriptors,

                                    train_keypoints,

                                    train_descriptors,

                                    max_distance=1.0):


    train_descriptor_tree = spatial.cKDTree(train_descriptors)

    _, matches = train_descriptor_tree.query(test_descriptors, distance_upper_bound=max_distance)


    test_kp_count = test_keypoints.shape[0]

    train_kp_count = train_keypoints.shape[0]


    test_matching_keypoints = np.array([test_keypoints[i,] for i in range(test_kp_count) if matches[i] != train_kp_count])

    train_matching_keypoints = np.array([train_keypoints[matches[i],] for i in range(test_kp_count) if matches[i] != train_kp_count])


    return test_matching_keypoints, train_matching_keypoints


def get_num_inliers(test_keypoints, test_descriptors, train_keypoints, train_descriptors):

    test_match_kp, train_match_kp = get_putative_matching_keypoints(test_keypoints, 

                                                                    test_descriptors, 

                                                                    train_keypoints,

                                                                    train_descriptors,

                                                                    MAX_DISTANCE)


    if test_match_kp.shape[0] <= MAX_REPROJECTION_ERROR:

        return 0

    try:

        _, mask = pydegensac.findHomography(test_match_kp,

                                            train_match_kp,

                                            MAX_REPROJECTION_ERROR,

                                            HOMOGRAPHY_CONFIDENCE,

                                            MAX_RANSAC_ITERATIONS)

        

    except np.linalg.LinAlgError:    # When det(H)=0, can't invert matrix.

        return 0


    return int(copy.deepcopy(mask).astype(np.float32).sum())

    

def get_total_score(num_inliers, global_score):

    local_score = min(num_inliers, MAX_INLIER_SCORE) / MAX_INLIER_SCORE

    return 0.5*local_score + global_score


def rescore_and_rerank_by_num_inliers(test_image_id, test_index, train_ids_and_scores):

    try:

        test_image_path = get_image_path('test', test_image_id)

        test_keypoints, test_descriptors = extract_local_features(test_image_path)


        for i in range(min(len(train_ids_and_scores[test_index]), NUM_TO_RERANK)):

            train_image_id, global_score = train_ids_and_scores[test_index][i]

            train_image_path = get_image_path('train', train_image_id)


            train_keypoints, train_descriptors = extract_local_features(train_image_path)



            num_inliers = get_num_inliers(test_keypoints, 

                                          test_descriptors,

                                          train_keypoints, 

                                          train_descriptors)


            total_score = get_total_score(num_inliers, global_score)

            train_ids_and_scores[test_index][i] = (train_image_id, total_score)


        train_ids_and_scores[test_index].sort(key=lambda x: x[1], reverse=True)

    except Exception as e:

        print(e)


def thread_call_rescore_and_rerank_by_num_inliers(test_indexs, test_ids, train_ids_and_scores):

    threads = []

    for test_index, test_id in zip(test_indexs, test_ids):

        t = threading.Thread(target=rescore_and_rerank_by_num_inliers, 

                             args=(test_id, test_index, train_ids_and_scores))

        t.start()

        threads.append(t)

    for t in threads:

        t.join()


def local_rerank(test_ids, train_ids_and_scores, test_remove):

    list_test_id = []

    list_test_index = []

    for test_index, test_id in enumerate(tqdm(test_ids)):

        if (test_id not in test_remove):

            list_test_id.append(test_id)

            list_test_index.append(test_index)

            

            if (len(list_test_id) == config["n_workers"] or test_index == len(test_ids)-1):

                thread_call_rescore_and_rerank_by_num_inliers(list_test_index, list_test_id, train_ids_and_scores)

                list_test_id = []

                list_test_index = []

    

    return test_remove, train_ids_and_scores


def get_predictions(labelmap):

    test_remove = {}

    

    test_ids, global_test_remove, train_ids_and_scores = global_predictions()

    test_remove = merge_dict(test_remove, global_test_remove, "global")

    gc.collect()

    

    if (LOCAL):

        local_test_remove, train_ids_and_scores = local_rerank(test_ids, train_ids_and_scores, test_remove)

    

    verification_predictions = get_prediction_map(test_ids, train_ids_and_scores, labelmap)

    return verification_predictions, test_remove


def get_prediction_map(test_ids, train_ids_and_scores, labelmap):

    prediction_map = dict()

    for test_index, test_id in enumerate(test_ids):

        aggregate_scores = {}

        for index, (train_id, score) in enumerate(train_ids_and_scores[test_index][:TOP_K]):

            label = labelmap[train_id]

            if label not in aggregate_scores:

                aggregate_scores[label] = 0

            aggregate_scores[label] += score

        label, score = max(aggregate_scores.items(), key=operator.itemgetter(1))

        prediction_map[test_id] = {'score': score, 'class': label}

    return prediction_map


def merge_dict(d, s, value):

    for key in s:

        if (key in d):

            d[key] += "_" + value

        else:

            d[key] = value

    return d


def my_glob(path, filetype):

    ids = []

    filepaths = []

    for root, dirs, files in os.walk(path):

        for file in files:

            if file.endswith(filetype):

                filepaths.append(os.path.join(root, file))

                ids.append(file[:-4])

    return ids, filepaths

    

def load_labelmap():

    with open(TRAIN_LABELMAP_PATH, mode='r') as csv_file:

        csv_reader = csv.DictReader(csv_file)

        labelmap = {row['id']: row['landmark_id'] for row in csv_reader}

    return labelmap


def save_submission_csv(predictions=None, test_remove = None):

    if predictions is None:

        shutil.copyfile(os.path.join(DATASET_DIR, 'sample_submission.csv'), 'submission.csv')

        return True

    with open('submission.csv', 'w') as submission_csv:

        csv_writer = csv.DictWriter(submission_csv, fieldnames=['id', 'landmarks'])

        csv_writer.writeheader()

        

        for image_id, prediction in predictions.items():

            if (image_id in test_remove):

                label = prediction['class']

                score = 0

                csv_writer.writerow({'id': image_id, 'landmarks': f''})

            else:

                label = prediction['class']

                score = prediction['score']

                csv_writer.writerow({'id': image_id, 'landmarks': f'{label} {score}'})


INPUT_DIR = os.path.join('..', 'input')


DATASET_DIR = os.path.join(INPUT_DIR, 'landmark-recognition-2021')

TEST_IMAGE_DIR = os.path.join(DATASET_DIR, 'test')

TRAIN_IMAGE_DIR = os.path.join(DATASET_DIR, 'train')

TRAIN_LABELMAP_PATH = os.path.join(DATASET_DIR, 'train.csv')


labelmap = load_labelmap()

num_training_images = len(labelmap.keys())

print(f'Found {num_training_images} training images')


if (num_training_images == config["NUM_PUBLIC_TRAIN_IMAGES"]) and not DEBUG:

    print("Copying sample submission")

    save_submission_csv()

else:

    if (num_training_images != config["NUM_PUBLIC_TRAIN_IMAGES"]):

        DEBUG = False


    verification_predictions, test_remove = get_predictions(labelmap)

    save_submission_csv(verification_predictions, test_remove)